Gröbner Bases of Bihomogeneous Ideals generated by Polynomials of Bidegree (1,1): Algorithms and Complexity
نویسندگان
چکیده
Solving multihomogeneous systems, as a wide range of structured algebraic systems occurring frequently in practical problems, is of first importance. Experimentally, solving these systems with Gröbner bases algorithms seems to be easier than solving homogeneous systems of the same degree. Nevertheless, the reasons of this behaviour are not clear. In this paper, we focus on bilinear systems (i.e. bihomogeneous systems where all equations have bidegree (1,1)). Our goal is to provide a theoretical explanation of the aforementioned experimental behaviour and to propose new techniques to speed up the Gröbner basis computations by using the multihomogeneous structure of those systems. The contributions are theoretical and practical. First, we adapt the classical F5 criterion to avoid reductions to zero which occur when the input is a set of bilinear polynomials. We also prove an explicit form of the Hilbert series of bihomogeneous ideals generated by generic bilinear polynomials and give a new upper bound on the degree of regularity of generic affine bilinear systems. We propose also a variant of the F5 Algorithm dedicated to multihomogeneous systems which exploits a structural property of the Macaulay matrix which occurs on such inputs. Experimental results show that this variant requires less time and memory than the classical homogeneous F5 Algorithm. Lastly, we investigate the complexity of computing a Gröbner basis for the grevlex ordering of a generic 0-dimensional affine bilinear system over k[x1, . . . ,xnx ,y1, . . . ,yny ]. In particular, we show that this complexity is upper bounded by O (nx+ny+min(nx+1,ny+1) min(nx+1,ny+1) )ω) , which is polynomial in nx +ny (i.e. the number of unknowns) when min(nx,ny) is constant.
منابع مشابه
Numerical Computation of Gröbner Bases for Zero-dimensional Polynomial Ideals
It is well known that in the computation of Gröbner bases an arbitrarily small perturbation in the coefficients of polynomials may lead to a completely different staircase even if the roots of the polynomials change continuously. This phenomenon is called pseudo singularity in this paper. We show how such phenomenon may be detected and even “repaired” by adding a new variable and a binomial rel...
متن کاملGröbner bases and gradings for partial difference ideals
In this paper we introduce a working generalization of the theory of Gröbner bases for the algebras of partial difference polynomials with constant coefficients. Such algebras are free objects in the category of commutative algebras endowed with the action by endomorphisms of a monoid isomorphic to Nr . Since they are not Noetherian algebras, we propose a theory for grading them that provides a...
متن کاملSome Complexity Results for Polynomial Ideals
In this paper, we survey some of our new results on the complexity of a number of problems related to polynomial ideals. We consider multivariate polynomials over some ring, like the integers or the rationals. For instance, a polynomial ideal membership problem is a (w + 1)-tuple P = ( f, g1, g2, . . . , gw) where f and the gi are multivariate polynomials, and the problem is to determine whethe...
متن کاملA Generalization of Gröbner Basis Algorithms to Polycyclic Group Rings
It is well-known that for the integral group ring of a polycyclic group several decision problems are decidable, in particular the ideal membership problem. In this paper we define an effective reduction relation for group rings over polycyclic groups. This reduction is based on left multiplication and hence corresponds to left ideals. Using this reduction we present a generalization of Buchber...
متن کاملComputation of Difference Groebner Bases
This paper is an updated and extended version of our note [1] (cf. also [2]). To compute difference Gröbner bases of ideals generated by linear polynomials we adopt to difference polynomial rings the involutive algorithm based on Janet-like division. The algorithm has been implemented in Maple in the form of the package LDA (Linear Difference Algebra) and we describe the main features of the pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 46 شماره
صفحات -
تاریخ انتشار 2011